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1 Existence of a Dipole Green’s Function

1.1 Symmetry of Green’s functions

Proposition 1.1 (symmetry of Green’s functions). Let X be a Riemann surface such that
Gx exists for some x ∈ X. Then Gy exists for any y, and Gx(y) = Gy(x).

We have already proven this when X is simply connected.

Proof. Idea: Let X̃ be a universal covering space of X. On X̃, Gz̃ exists for all z̃ ∈ p−1(x),
where p : X̃ → X is a covering map. So X̃ = D, and

Gz̃(ỹ) = log

∣∣∣∣1− z̃ỹ

ỹ − z̃

∣∣∣∣
is symmetric.

Remark 1.1. It follows that any Riemann surface is second countable (Rado’s theorem).
Take X, and remove a parametric disc. Then the rest of the space has a Green’s function,
so it is covered by a disc, which is second countable.

1.2 Existence of a dipole Green’s function

Theorem 1.1 (existence of a dipole Green’s function). Let X be a Riemann surface, and
let x1 6= x2 ∈ X. Let zj : Dj → {|z| < 1} be parametric discs such that zj(xj) = 0 and D1∩
D2 = ∅. Then there exists a harmonic Gx1,x2 on X \{x1, x2} such that Gx1,x2 + log |z1(y)|
is harmonic in D1, Gx1,x2 + log |z2(y)| is harmonic in D2, and supX\(D1∪D2) |Gx1,x2 | <∞.

Proof. Let D0 ⊆ X be a parametric disc z0 : D0 : {|z| < 1} with z0(x0) = 0 and D0∩Dj =
∅ for j = 1, 2. For 0 < t < 1, let tD0 = {y ∈ D0 : |z0(y)| < t}. Let Xt = X \ tD0. We know
that Green’s function GXt(x1, y) exists for all y ∈ Xt \ {x1} and for all t. Let 0 < r < 1.
Let v ∈ Fx1 , the Perron family on Xt used to construct GXt(x1, y). When y ∈ Xt \ rD1,

v(y) ≤ sup
∂(rD1)

v
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by the maximum principle. Taking the sup over all v ∈ Fx1 ,

GXy(x1, y) ≤ sup
∂(rD1)

GXt(x1, y) =: M(t).

On the other hand, we have shown last time that

sup
∂(rD1)

v + log(r) ≤ sup
∂D1

v

(by applying the maximum principle to v(y) + log |z1(y)| in D1). We get

M(t) + log(r) ≤ sup
∂D1

GXt(x1, y).

Consider the function

ut(y) = M(t)−GXt(x1, y), y ∈ Xt \ rD1

Then ut(y) ≥ 0 and is harmonic. There exists a y0 ∈ ∂D1 such that ut(y0) ≤ log(1/r). We
want to apply Harnack’s principle to ut: Let K ⊆ X1 \rD1 be compact such that D2 ⊆ K1

and ∂D1 ⊆ K. By Harnack’s inequality,

supK ut
infK ut

≤ C(K, r),

where C(K, r) is a geometric constant independent of t. So

ut(y) ≤ C, y ∈ K,

uniformly in t. So

|GXt(x1, y)−GXt(x1, x2)| = |ut(y)− ut(x2)| ≤ 2C.

Similarly,
|GXt(x2, y)−GXt(x2, x1)| ≤ 2C, y ∈ K ′,K ′ ⊇ D1 ∪ ∂D2.

By the symmetry of Green’s functions, GXt(x2, x1) = GXt(x1, x2). So we get

|GXt(x1, y)−GXt(x2, y)| ≤ C

uniformly in t for y ∈ ∂D1 ∪ ∂D2.
We also want uniform control on Gt on Xt \ (D1 ∪ D2): Let v ∈ Fx1 . Then v(y) −

GXt(x2, y) is subharmonic for y ∈ Xt \D1, so

v(y)−GXt(x2, y) ≤ sup
∂D1

(v −GXt(x2, y)) ≤ C
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by the maximum principle. So

GXt(x1, y)−GXt(x2, y)︸ ︷︷ ︸
:=Gt(y,x1,x2)

≤ C

on Xt \D1. Similarly,
inf

y∈Xt\D2

Gt = − sup
Xt\D2

−Gt ≥ C,

so we get
sup

Xt\(D1∪D2)
|Gt| ≤ C,

uniformly in t. In Dj , j = 1, 2, Gt(y, x1, x2) + log |z1(y)| is harmonic in D1. By the
maximum principle applied in D1,

|Gt(y, x1.x2) + log |z1(y)|| ≤ C, y ∈ D1,

uniformly in t. Similarly,

|Gt(y, x1, x2)− log |z2(y)|| ≤ C, y ∈ D2,

uniformly in t.
These three uniform inequalities give us the following: Let K ⊆ X \ {x1, x2, x0} be

compact. By normal families and Rado’s theorem, there exists a sequence tn → 0 and G
harmonic on X \ {x0, x1, x2} such that Gtn → G locally uniformly on X \ {x0, x1, x2}. The
first inequality gives us that G is bounded in D0 \ {x0}; so G extends harmonically to D0.
Similarly,

|G(y) + log |z1(y)| ≤ C in D1 =⇒ G + log |z1| is harmonic in D1,

|G(y) + log |z2(y)| ≤ C in D2 =⇒ G + log |z2| is harmonic in D2.

So G is a dipole Green’s function.
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